Page 216 - Cost-Benefit Analysis of agricultural waste management methods
P. 216

Katagis, T., & Gitas, I. Z. (2022). Assessing the Accuracy of MODIS MCD64A1 C6 and

                       FireCCI51 Burned Area Products in Mediterranean Ecosystems. Remote Sensing,
                       14(3), 602. Retrieved from https://www.mdpi.com/2072-4292/14/3/602

                   Kavita Sharma Phd. and V.K. Garg Phd., Vermicomposting of Waste. Sustainable
                       Resource Revovery and Zero Waste Approaches, 2019; 134-138.

                   Kimura, S. D., Mishima, S. I., & Yagi, K. (2011). Carbon resources of residue and manure in

                       Japanese farmland soils. Nutrient Cycling in Agroecosystems, 89(2), 291–302.
                       Retrieved from https://doi.org/10.1007/s10705-010-9394-0

                   Kitzing, L., Mitchell, C., & Erik, P. (2020). Renewable energy policies in Europe :

                       Converging or diverging ? Energy Policy, 51(2012), 192–201. Retrieved from
                       https://doi.org/10.1016/j.enpol.2012.08.064

                   Kootstra et al., 2019. Dissolution of phosphate from pig manure ash using organic and

                       mineral acids, Waste Management, Volume 88, 1 April 2019, Pages 141-146
                   Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food

                       security. Science, 304, 1623-1627. Retrieved from http://www.sciencemag.org
                   Liang, S., Xu, M., & Zhang, T. (2012). Unintended consequences of bioethanol feedstock

                       choice in China. Bioresource Technology, 125, 312-317.

                       doi:https://doi.org/10.1016/j.biortech.2012.08.097
                   Liang, S., Xu, M., & Zhang, T. (2012). Unintended consequences of bioethanol feedstock

                       choice in China. Bioresource Technology. Retrieved from

                       https://doi.org/10.1016/j.biortech.2012.08.097
                   LingJun Li, 2008. Wheat straw burning and its associated impacts on Beijing air quality.

                       Science in China Series D: Earth Science. 51 (2008); 403-414.

                   Lopes, A. A., Viriyavipart, A., & Tasneem, D. (2020). The role of social influence in crop
                       residue management: Evidence from Northern India. Ecological Economics, 169,

                       106563. Retrieved from https://doi.org/https://doi.org/10.1016/j.ecolecon.
                       2019.106563

                   Mallinis, G., & Koutsias, N. (2012). Comparing ten classification methods for burned area
                       mapping in a Mediterranean environment using Landsat TM satellite data.

                       International Journal of Remote Sensing, 33(14), 4408-4433.

                       doi:10.1080/01431161.2011.648284
                   Matsumura, Y., Minowa, T., & Yamamoto, H. (2005). Amount, availability, and potential

                       use of rice straw (agricultural residue) biomass as an energy resource in Japan.




                                                            209
   211   212   213   214   215   216   217   218   219   220   221